A. Pendahuluan
Terjadinya
gelombang elektromagnetik, arus listrik dapat menghasilkan (menginduksi) medan
magnet. Ini dikenal sebagai gejala induksi magnet. Peletak dasar konsep ini
adalah Oersted yang telah menemukan gejala ini secara eksperimen dan dirumuskan
secara lengkap oleh Ampere. Gejala induksi magnet dikenal sebagai Hukum Ampere.
Kedua, medan magnet yang berubah-ubah terhadap waktu dapat menghasilkan
(menginduksi) medan listrik dalam bentuk arus listrik. Gejala ini dikenal
sebagai gejala induksi elektromagnet. Konsep induksi elektromagnet ditemukan
secara eksperimen oleh Michael Faraday dan dirumuskan secara lengkap oleh
Joseph Henry. Hukum induksi elektromagnet sendiri kemudian dikenal sebagai
Hukum Faraday-Henry.
Dari
kedua prinsip dasar listrik magnet di atas dan dengan mempertimbangkan konsep
simetri yang berlaku dalam hukum alam, James Clerk Maxwell mengajukan suatu
usulan. Usulan yang dikemukakan Maxwell, yaitu bahwa jika medan magnet yang
berubah terhadap waktu dapat menghasilkan medan listrik maka hal sebaliknya
boleh jadi dapat terjadi. Dengan demikian Maxwell mengusulkan bahwa medan
listrik yang berubah terhadap waktu dapat menghasilkan (menginduksi) medan
magnet. Usulan Maxwell ini kemudian menjadi hukum ketiga yang menghubungkan
antara kelistrikan dan kemagnetan. Jadi, prinsip ketiga adalah medan listrik
yang berubah-ubah terhadap waktu dapat menghasilkan medan magnet. Prinsip
ketiga ini yang dikemukakan oleh Maxwell pada dasarnya merupakan pengembangan dari
rumusan hukum Ampere. Oleh karena itu, prinsip ini dikenal dengan nama Hukum
Ampere-Maxwell. Dari ketiga prinsip dasar kelistrikan dan kemagnetan di atas,
Maxwell melihat adanya suatu pola dasar. Medan magnet yang berubah terhadap
waktu dapat membangkitkan medan listrik yang juga berubah-ubah terhadap waktu,
dan medan listrik yang berubah terhadap waktu juga dapat menghasilkan medan
magnet. Jika proses ini berlangsung secara kontinu maka akan dihasilkan medan
magnet dan medan listrik secara kontinu. Jika medan magnet dan medan listrik
ini secara serempak merambat (menyebar) di dalam ruang ke segala arah maka ini
merupakan gejala gelombang. Gelombang semacam ini disebut gelombang
elektromagnetik karena terdiri dari medan listrik dan medan magnet yang merambat
dalam ruang.
B. Kajian Teori Gelombang Elektromagnetik
Gelombang Elektromagnetik adalah
gelombang yang dapat merambat walau tidak ada medium. Energi
elektromagnetik merambat dalam gelombang dengan beberapa karakter yang bisa
diukur, yaitu: panjang gelombang/wavelength, frekuensi, amplitude/amplitude, kecepatan.
Amplitudo adalah tinggi gelombang, sedangkan panjang gelombang adalah jarak
antara dua puncak. Frekuensi adalah jumlah gelombang yang melalui suatu titik
dalam satu satuan waktu. Frekuensi
tergantung dari kecepatan merambatnya gelombang. Karena kecepatan energi
elektromagnetik adalah konstan (kecepatan cahaya), panjang gelombang dan
frekuensi berbanding terbalik. Semakin panjang suatu gelombang, semakin rendah
frekuensinya, dan semakin pendek suatu gelombang semakin tinggi frekuensinya.
Energi
elektromagnetik dipancarkan, atau dilepaskan, oleh semua masa di alam semesta
pada level yang berbedabeda. Semakin tinggi level energi dalam suatu sumber
energi, semakin rendah panjang gelombang dari energi yang dihasilkan, dan
semakin tinggi frekuensinya. Perbedaan
karakteristik energi gelombang digunakan untuk mengelompokkan energi
elektromagnetik.
Ciri-ciri gelombang elektromagnetik :
Dari uraian tersebut diatas dapat disimpulkan beberapa ciri gelombang
elektromagnetik adalah sebagai berikut:
- Perubahan medan listrik dan medan magnetik terjadi pada saat yang bersamaan, sehingga kedua medan memiliki harga maksimum dan minimum pada saat yang sama dan pada tempat yang sama.
- Arah medan listrik dan medan magnetik saling tegak lurus dan keduanya tegak lurus terhadap arah rambat gelombang.
- Dari ciri no 2 diperoleh bahwa gelombang elektromagnetik merupakan gelombang transversal.
- Seperti halnya gelombang pada umumnya, gelombang elektromagnetik mengalami peristiwa pemantulan, pembiasan, interferensi, dan difraksi. Juga mengalami peristiwa polarisasi karena termasuk gelombang transversal.
- Cepat rambat gelombang elektromagnetik hanya bergantung pada sifat-sifat listrik dan magnetik medium yang ditempuhnya.
Cahaya yang
tampak oleh mata bukan semata jenis yang memungkinkan radiasi elektromagnetik.
Pendapat James Clerk Maxwell menunjukkan bahwa gelombang elektromagnetik lain,
berbeda dengan cahaya yang tampak oleh mata dalam dia punya panjang gelombang
dan frekuensi, bisa saja ada. Kesimpulan teoritis ini secara mengagumkan
diperkuat oleh Heinrich Hertz, yang sanggup menghasilkan dan menemui kedua
gelombang yang tampak oleh mata yang diramalkan oleh Maxwell itu. Beberapa
tahun kemudian Guglielmo Marconi memperagakan bahwa gelombang yang tak terlihat
mata itu dapat digunakan buat komunikasi tanpa kawat sehingga menjelmalah apa
yang namanya radio itu. Kini, kita gunakan juga buat televisi, sinar X, sinar
gamma, sinar infra, sinar ultraviolet adalah contoh-contoh dari radiasi
elektromagnetik. Semuanya bisa dipelajari lewat hasil pemikiran Maxwell.
- Osilasi listrik.
- Sinar matahari ® menghasilkan sinar infra merah.
- Lampu merkuri ® menghasilkan ultra violet.
- Penembakan elektron dalam tabung hampa pada keping logam ® menghasilkan sinar X (digunakan untuk rontgen).
Inti atom yang tidak stabil menghasilkan sinar
gamma.
SPEKTRUM GELOMBANG ELEKTROMAGNETIK
Susunan semua bentuk gelombang
elektromagnetik berdasarkan panjang gelombang dan frekuensinya disebut spektrum
elektromagnetik. Gambar spectrum elektromagnetik di bawah disusun berdasarkan
panjang gelombang (diukur dalam satuan _m) mencakup kisaran energi yang sangat
rendah, dengan panjang gelombang tinggi dan frekuensi rendah, seperti gelombang
radio sampai ke energi yang sangat tinggi, dengan panjang gelombang rendah dan
frekuensi tinggi seperti radiasi X-ray dan Gamma Ray.
Contoh spektrum elektromagnetik
Gelombang Radio
Gelombang radio dikelompokkan menurut panjang gelombang
atau frekuensinya. Jika panjang gelombang tinggi, maka pasti frekuensinya
rendah atau sebaliknya. Frekuensi gelombang radio mulai dari 30 kHz ke atas dan
dikelompokkan berdasarkan lebar frekuensinya. Gelombang radio dihasilkan oleh
muatan-muatan listrik yang dipercepat melalui kawat-kawat penghantar.
Muatan-muatan ini dibangkitkan oleh rangkaian elektronika yang disebut
osilator. Gelombang radio ini dipancarkan dari antena dan diterima oleh antena
pula. Kamu tidak dapat mendengar radio secara langsung, tetapi penerima radio
akan mengubah terlebih dahulu energi gelombang menjadi energi bunyi.
Gelombang mikro
Gelombang mikro (mikrowaves) adalah gelombang radio
dengan frekuensi paling tinggi yaitu diatas 3 GHz. Jika gelombang mikro diserap
oleh sebuah benda, maka akan muncul efek pemanasan pada benda itu. Jika makanan
menyerap radiasi gelombang mikro, maka makanan menjadi panas dalam selang waktu
yang sangat singkat. Proses inilah yang dimanfaatkan dalam microwave oven untuk
memasak makanan dengan cepat dan ekonomis.
Gelombang mikro juga dimanfaatkan pada pesawat RADAR
(Radio Detection and Ranging) RADAR berarti mencari dan menentukan jejak sebuah
benda dengan menggunakan gelombang mikro. Pesawat radar memanfaatkan sifat
pemantulan gelombang mikro. Karena cepat rambat glombang elektromagnetik c = 3
X 108 m/s, maka dengan mengamati selang waktu antara pemancaran dengan
penerimaan.
Sinar Inframerah
Sinar inframerah meliputi daerah frekuensi 1011Hz sampai
1014 Hz atau daerah panjang gelombang 10-4 cm sampai 10-1 cm. jika kamu
memeriksa spektrum yang dihasilkan oleh sebuah lampu pijar dengan detektor yang
dihubungkan pada miliampermeter, maka jarum ampermeter sedikit diatas ujung
spektrum merah. Sinar yang tidak dilihat tetapi dapat dideteksi di atas
spektrum merah itu disebut radiasi inframerah.
Sinar infamerah dihasilkan oleh elektron dalam molekul-molekul yang bergetar
karena benda diipanaskan. Jadi setiap benda panas pasti memancarkan sinar
inframerah. Jumlah sinar inframerah yang dipancarkan bergantung pada suhu dan
warna benda.
Cahaya tampak
Cahaya tampak sebagai radiasi elektromagnetik yang paling
dikenal oleh kita dapat didefinisikan sebagai bagian dari spektrum gelombang
elektromagnetik yang dapat dideteksi oleh mata manusia. Panjang gelombang
tampak nervariasi tergantung warnanya mulai dari panjang gelombang kira-kira 4
x 10-7 m untuk cahaya violet (ungu) sampai 7x 10-7 m untuk cahaya merah.
Kegunaan cahaya salah satunya adlah penggunaan laser dalam serat optik pada
bidang telekomunikasi dan kedokteran.
Sinar ultraviolet
Sinar ultraviolet mempunyai frekuensi dalam daerah 1015
Hz sampai 1016 Hz atau dalam daerah panjang gelombagn 10-8 m 10-7 m. gelombang
ini dihasilkan oleh atom dan molekul dalam nyala listrik. Matahari adalah
sumber utama yang memancarkan sinar ultraviolet dipermukaan bumi,lapisan ozon
yang ada dalam lapisan atas atmosferlah yang berfungsi menyerap sinar
ultraviolet dan meneruskan sinar ultraviolet yang tidak membahayakan kehidupan
makluk hidup di bumi.
Sinar X
Sinar X mempunyai frekuensi antara 10 Hz sampai 10 Hz . panjang
gelombangnya sangat pendek yaitu 10 cm sampai 10 cm. meskipun seperti itu tapi
sinar X mempunyai daya tembus kuat, dapat menembus buku tebal, kayu tebal
beberapa sentimeter dan pelat aluminium setebal 1 cm.
Sinar Gamma
Sinar gamma mempunyai frekuensi antara 10 Hz sampai 10 Hz
atau panjang gelombang antara 10 cm sampai 10 cm. Daya tembus paling besar,
yang menyebabkan efek yang serius jika diserap oleh jaringan tubuh.
Contoh penerapan gelombang elektromagnetik dalam kehidupan sehari-hari
1. Radio
Radio energi
adalah bentuk level energi elektromagnetik terendah, dengan kisaran panjang
gelombang dari ribuan kilometer sampai kurang dari satu meter. Penggunaan
paling banyak adalah komunikasi, untuk meneliti luar angkasa dan sistem radar.
Radar berguna untuk mempelajari pola cuaca, badai, membuat peta 3D permukaan
bumi, mengukur curah hujan, pergerakan es di daerah kutub dan memonitor
lingkungan. Panjang
gelombang radar berkisar antara 0.8 – 100 cm
2. Microwave
Panjang
gelombang radiasi microwave berkisar antara 0.3 – 300 cm. Penggunaannya
terutama dalam bidang komunikasi dan pengiriman informasi melalui ruang
terbuka, memasak, dan sistem PJ aktif. Pada sistem PJ aktif, pulsa microwave
ditembakkan kepada sebuah target dan refleksinya diukur untuk mempelajari
karakteristik target. Sebagai contoh aplikasi adalah Tropical Rainfall
Measuring Mission’s (TRMM) Microwave Imager (TMI), yang mengukur radiasi
microwave yang dipancarkan dari Spektrum elektromagnetik Energi elektromagnetik
atmosfer bumi untuk mengukur penguapan, kandungan air di awan dan intensitas
hujan
3. Infrared
Kondisi-kondisi kesehatan dapat
didiagnosis dengan menyelidiki pancaran inframerah dari tubuh. Foto inframerah
khusus disebut termogram digunakan untuk mendeteksi masalah sirkulasi darah,
radang sendi dan kanker. Radiasi inframerah dapat juga digunakan dalam alarm
pencuri. Seorang pencuri tanpa sepengetahuannya akan menghalangi
sinar dan menyembunyikan alarm. Remote control berkomunikasi dengan TV melalui
radiasi sinar inframerah yang dihasilkan oleh LED ( Light Emiting Diode ) yang
terdapat dalam unit, sehingga kita dapat menyalakan TV dari jarak jauh dengan
menggunakan remote control.
4. Ultraviolet
Sinar UV
diperlukan dalam asimilasi tumbuhan dan dapat membunuh kuman-kuman penyakit
kulit.
5. Sinar
X
Sinar X ini biasa digunakan dalam
bidang kedokteran untuk memotret kedudukan tulang dalam badan terutama untuk
menentukan tulang yang patah. Akan tetapi penggunaan sinar X harus hati-hati
sebab jaringan sel-sel manusia dapat rusak akibat penggunaan sinar X yang
terlalu lama.
III. KESIMPULAN
Dari pembahasan di atas, dapat disimpulkan bahwa begitu besar peranan gelombang elektromagnetik yang bermanfaat dalam kehidupan kita sehari-hari, tanpa kita sadari keberadaannya.
Spektrum elektromagnetik adalah rentang semua radiasi
elektromagnetik yang mungkin. Spektrum elektromagnetik dapat dijelaskan dalam
panjang gelombang, frekuensi, atau tenaga per foton. Spektrum ini secara
langsung berkaitan :
* Panjang gelombang dikalikan dengan frekuensi ialah kecepatan cahaya: 300
Mm/s, yaitu 300 MmHz
* Energi dari foton adalah 4.1 feV per Hz, yaitu 4.1µeV/GHz
* Panjang gelombang dikalikan dengan
energy per foton adalah 1.24 µeVm
Spektrum elektromagnetik dapat dibagi dalam beberapa
daerah yang terentang dari sinar gamma gelombang pendek berenergi tinggi sampai
pada gelombang mikro dan gelombang radio dengan panjang gelombang sangat
panjang. Pembagian ini sebenarnya tidak begitu tegas dan tumbuh dari penggunaan
praktis yang secara historis berasal dari berbagai macam metode deteksi.
Biasanya dalam mendeskripsikan energi spektrum elektromagnetik dinyatakan dalam
elektronvolt untuk foton berenergi tinggi (di atas 100 eV), dalam panjang
gelombang untuk energi menengah, dan dalam frekuensi untuk energi rendah (? =
0,5 mm). Istilah “spektrum optik” juga masih digunakan secara luas dalam
merujuk spektrum elektromagnetik, walaupun sebenarnya hanya mencakup sebagian
rentang panjang gelombang saja (320 – 700 nm)[1].
Dan beberapa contoh spektrum elektromagnetik seperti :
Radar (Radio
Detection And Ranging),digunakan sebagai pemancar dan penerima gelombang.
Infra
Merah Dihasilkan
dari getaran atom dalam bahan dan dimanfaatkan untuk mempelajari
struktur molekul Sinar tampak mempunyai panjang gelombang 3990 Aº – 7800 Aº. Ultra ungu dimanfaatkan untuk pengenalan unsur suatu bahan dengan
teknik spektroskopi.
Tidak ada komentar:
Posting Komentar